Boundary value problems for nonlinear impulsive Hamiltonian systems
نویسندگان
چکیده
منابع مشابه
Periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces
This paper deals with the Periodic boundary value problems for Controlled nonlinear impulsive evolution equations. By using the theory of semigroup and fixed point methods, some conditions ensuring the existence and uniqueness. Finally, two examples are provided to demonstrate the effectiveness of the proposed results.
متن کاملSolvability for second order nonlinear impulsive boundary value problems
Impulsive differential equations play a very important role in understanding mathematical models of real processes and phenomena studied in physics, chemical technology, population dynamics, biotechnology, economics and so on, see [1,2,8,10,17]. About wide applications of the theory of impulsive differential equations to different areas, we refer the readers to monographs [5,7,18,19] and the re...
متن کاملPeriodic boundary value problems for nonlinear impulsive fractional differential equation
In this paper, we investigate the existence and uniqueness of solution of the periodic boundary value problem for nonlinear impulsive fractional differential equation involving Riemann-Liouville fractional derivative by using Banach contraction principle.
متن کاملEXISTENCE RESULTS FOR NONLINEAR IMPULSIVE qk-INTEGRAL BOUNDARY VALUE PROBLEMS
u(T ) = ∑m i=0 ∫ ti+1 ti g(s, u(s)) dqis, where Dqk are qk-derivatives (k = 0, 1, 2, . . . ,m), f, g ∈ C(J ×R, R), Ik ∈ C(R,R), J = [0, T ](T > 0), 0 = t0 < t1 < · · · < tk < · · · < tm < tm+1 = T , J ′ = J\{t1, t2, . . . , tm}, and ∆u(tk) = u(t + k ) − u(t − k ), u(t + k ) and u(t − k ) denote the right and the left limits of u(t) at t = tk (k = 1, 2, . . . ,m) respectively. The study of q-dif...
متن کاملBoundary-Value Problems for Weakly Nonlinear Delay Differential Systems
and Applied Analysis 3 where the kernel K t, s is an n × n Cauchy matrix defined in the square a, b × a, b being, for every fixed s ≤ t , a solution of the matrix Cauchy problem LK ·, s t : ∂K t, s ∂t −A t Sh0K ·, s t Θ, K s, s I, 1.8 where K t, s ≡ Θ if a ≤ t < s ≤ b, Θ is n × n null matrix and I is n × n identity matrix. A fundamental n × n matrix X t for the homogeneous φ ≡ θ equation 1.5 ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2014
ISSN: 0377-0427
DOI: 10.1016/j.cam.2013.06.034